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SUMMARY 

This report describes a numerical method for generating three-dimensional grids for turbomachinery compu- 
tational fluid dynamics codes. The basic method is general and involves the solution of a quasi-linear elliptic 
partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification 
of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and 
the grid orthogonality at the boundary surfaces. I t  includes adaptive mechanisms to improve smoothness, 
orthogonality, and flow resolution in the grid interior. A geometry preprocessor constructs the grid point dis- 
tributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown 
for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user’s manuals for the basic solver 
and the geometry preprocessor. 

INTRODUCTION 

Three-dimensional computational fluid dynamics codes require computational grids with suitable resolution, 
smoothness, and orthogonality. High grid resolution allows complex flow physics to be modelled near shocks 
and in shear layers. Smoothness of the metric data prevents the flow solution from being dominated by 
truncation error in the metric coefficients. Grid orthogonality at  the boundaries simplifies and improves the 
accuracy of any boundary condition involving normal gradients. 

The above qualities are especially difficult to maintain for realistic turbomachinery geometries. Modern three- 
dimensional designs comprise tapered, twisted, leaned, and bowed blade shapes within contoured endwalls 
to tailor secondary flows. Centrifugal compressors and radial turbines involve simultaneous flow turning in 
the meridional and blade-to-blade planes. The periodicity condition within blade rows poses an additional 
unique problem. 

Current grid generation technology is fairly well developed for general two-dimensional turbomachine cascade 
geometries. Conformal mapping, algebraic interpolation, and partial differential equation methods are all 
used successfully. The general three-dimensional geometry represented by a realistic turbomachine cascade 
has unique requirements for a body-fitted grid that have not been met with current technology. 

This report describes a numerical method for generating three-dimensional grids for turbomachinery com- 
putational fluid dynamics codes. The basic method is general and involves the solution of a quasi-linear 
elliptic pa.rtia1 differential equation via pointwise successive over-relaxation with a local relaxation factor. 
The governing equation contains forcing functions that depend upon the boundary point distribution and the 
boundary surface gradient. The method allows specification of the grid point distribution on the boundary 
surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality a t  the boundary surfaces. It 
includes adaptive mechanisms to  improve smoothness, orthogonality, and flow resolution in the grid interior. 
A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbo- 
machinery cascades. It utilizes a two-dimensional version of the basic solver and algebraic interpolation to  
form the boundary distributions for the three-dimensional basic solver. 

t 
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This report includes a description of the coordinate system , a discussion of the mathematical formulation of 
the method, and some representative results. Two appendices serve as the user’s manuals for the geometry 
preprocessor and the basic solver. 

COORDINATE SYSTEM 

The partial differential equations for computational fluid dynamics codes are usually described with reference 
to a generalized coordinate system to simplify the implementation and make it independent of any specific 
geometry. The function of a grid generation system is to generate an ordered distribution of points in 
physical space to align with some body-conforming generalized coordinate system in computational space. 
Physical space is described with reference to a Cartesian coordinate system for the grid generation technique 
described in this report. Each boundary surface segment in physical space must coincide with a boundary 
surface segment in computational space. 

Three types of generalized body-conforming coordinate systems are commonly used for turbomachinery 
cascades: C-grid, H-grid, and 0-grid. The grid generation technique described in this report can produce 
C-grids and H-grids. 

Figure l(a) shows a C-grid about a generic blade shape in the Cartesian ( t 1 , 2 2 , ~ 3 )  coordinate system 
in physical space. The inlet surface is A1-A2-A2’-A11 and the outlet surface is B1-B2-B2’-B11. The hub 
endwall surface is Alt-B1’-B2’-A2’ and the shroud endwall surface is Al-Bl-B2-A2. The periodic surfaces 
are Al-Bl-Bl’-Al’ and A2-B2-B2‘-A2’. The blade surface is the wrapped D-E-D-D‘-E’-D’ surface. Surface 
C-D-D‘-C’ represents a branch cut from the wrapped blade surface to the outlet surface. Figure l(b) shows 
the C-grid in the generalized (tl , t2, €3) coordinate system in computational space. 

Figure 2(a) shows an H-grid between two generic blade shapes in the Cartesian ( t 1 , 2 2 , 2 3 )  coordinate sys- 
tem in physical space. The inlet surface is Al-A2-A2’-Al’ and the outlet surface is B1-B2-B2’-Blt. The 
hub endwall is A1’-Bl1-B2’-A2’ and the shroud endwall surface is Al-Bl-B2-A2. The periodic surfaces are 
Al-Cl-Cl’-Al’, A2-C2-C2’-A2’, Dl-Bl-Bl‘-Dl’, and D2-B2-B2’-D2‘. The blade surfaces are Cl-Dl-Dl’-Cl’ 
and C2-D2-D2’-C2’. Figure 2(b) shows the H-grid in the generalized (€1 , €2)  €3) coordinate system in com- 
putational space. 

MATHEMATICAL FORMULATION 

The quasi-linear elliptic governing equation is taken from reference 1 as 

The metric tensor components giJ and g k k  in equation (1) are defined as 
. .  

gij = zi’ . 63 

where 
zi’ = zi, x 6k / f i  i ,  j, k cyclic 
f i  = iil . (6, x zi3) 

dZ 6.  - _. 
’ - a& 

The E in equation (1) represents the position vector in physical space with Cartesian ( 2 1 , 2 2 , 2 3 )  components. 
The Pk are the forcing functions specified by the user. They represent one-dimensional stretching in each 
coordinate direction. Values of the forcing functions on the boundaries are determined by specification of 
the boundary point distribution and the boundary surface gradient. Values of the forcing functions in the 
interior are determined by interpolation of the values on the boundaries. 
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Equation (1) can be rewritten using matrix notation as 

A + B P = O  

where 

33 81% 
O 9 -:I 

p =  (5) 
Equation (3) can be solved for P k  on the boundaries as 

where the subscript “0” indicates values on the boundary. Tangential derivatives for terms on the right hand 
side of equation (4) are determined by applying standard difference formulas to the prescribed boundary 
point distribution on the surface. Normal derivatives are determined by specifying the first normal derivative 
equal to the desired spacing off the boundary and using the approximation 

(5) 
a 2 z o  2(11-20) 2 azo -- --- - 
an2 (An)2 An an 

where n indicates the normal direction, the subscript “0” indicates values on the boundary, and the subscript 
“1” indicates values one point away from the boundary. 

Once the boundary values are known, the interior values of P k  can be determined using 

where 

The value of  PO^,,,^ represents the k-th component of the PO vector on the minimum boundary surface in 
the I-th direction. The value of PoL,1,3 represents the k-th component of the Po vector on the maximum 
boundary surface in the I-th direction. The functions a, p, and 7 have subscript notation similar to  that of 
PO. The CY function represents linear extrapolation from a controlled boundary using a constant factor C,. 
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The y function represents the combined effect of the p functions, which represent power-law factorization 
with constant exponent Cp to control the depth of influence away from a controlled boundary. 

The values of the forcing functions can be modified for improved smoothness by using 

P; = 6 Pk (7) 

where 
8 = 1 - tanh(Ce,(l -aCe.))  

u = J /  (1111 II . l l l z l l  .11/311> * 

The constants Ce, and Ce, define the rate and order of the adaptation. The variable u is a measure of the 
shear of the grid, with J representing the Jacobian and 11 ,12 ,13  representing the grid cell lengths in each 
direction. 

A measure of the local orthogonality of the grid can be defined as 

I$ = uC*/J. 

The constant exponent Cd defines the order of the adaptation. 
equation (8) can then be written as 

6 k ( u )  4; = - - C # T .  J 

(8) 

A one-dimensional variational form of 

(9) 

If a flow variable gradient E is computed by the flow solver such that E 2 0, a measure of the local flow 
resolution can be defined as 

11, = J ( 1 +  E) .  (10) 
A one-dimensional variational form of equation (10) can then be written as 

The values of the forcing functions can be modified for improved local orthogonality and flow resolution 
using 

P L = ( l + X k ) p k  F k ' P k > o  
( 1 2 )  P ; = ( l - X k ) P k  F k . P k < o  

where 

with the constants CA,, CA,, and Cx3 determining the range, rate, and order of the adaptation. The variable 
F represents a weighted combination of the skewness and flow error variations, with W+ and W$ as the 
respective weighting constants. 

These adaptive adjustments to the forcing functions can be employed in an accumulative or a non- 
accumulative manner. Under the accumulative method, the adjustments are lagged, but the forcing functions 
always satisfy the physical constraints. Under the non-accumulative method, the adjustments are immediate, 
but they are limited by the range and rate constants. 

The following sequence is iterated until convergence is attained: 
1 .  Solve the governing equation with current forcing functions using pointwise relaxation with a local 

2 .  Evaluate the second normal derivatives on the boundary surfaces. 
3. Evaluate the forcing functions on the boundary surfaces. 

relaxation factor for stability. 
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4. Evaluate the forcing functions in the interior by interpolation. 
5. Adjust the forcing functions for adaptive smoothness, orthogonality, and flow resolution. 

RESULTS 

Figure 3 shows a three-dimensional C-grid for a turbine rotor. The grid comprises 101 points in the t1 
direction around the blade, 16 points in the €2 direction away from the blade, and 15 points in the t3 
direction from hub to tip. The grid was truncated in the €1 direction and thinned in the t 2  direction to 
improve the appearance of the figure. The spacing at the solid surfaces was specified as 0.1 relative to the 
uniform unit spacing. Default values were used for all other variables. This grid required approximately 
1200 seconds of Cray X-MP computing time for 600 iterations. 

Figure 4 shows a three-dimensional H-grid for the same turbine rotor as Figure 3. The grid comprises 61 
points in the streamwise €1 direction, 31 points in the pitchwise €2 direction, and 15 points in the radial t 3  

direction. The grid was thinned in the €2 direction to improve the appearance of the figure. The spacing 
at the solid surfaces was specified as 0.1 relative to  the uniform unit spacing. Default values were used for 
all other variables. This grid required approximately 1400 seconds of Cray X-MP computing time for 600 
iterations. 

CONCLUDING REMARKS 

A general numerical method for generating three-dimensional grids was developed and implemented along 
with a geometry preprocessor for turbomachinery cascades. Results were shown for a Egr id  and an H- 
grid for,a turbine rotor. The method includes an adaptive mechanism for improved flow resolution when 
coupled'with a flow solver, but this was not demonstrated. Since the basic method is completely general, 
additional preprocessors for other physical geometries could be developed to extend the application of this 
grid generation method. 
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APPENDIX A 

USER’S MANUAL FOR BASIC SOLVER 

The basic solver is coded in FOElTRAN IV as program GRID3D with 34 subprograms. The nonstandard 
PARAMETER statement is used to facilitate dimensioning of arrays, while the nonstandard NAMELIST 
feature is used for quasi-free-format input. Figure 5 shows a flow chart of the program. 

Input to the basic solver comprises three namelists read on unit 5 and the initial grid binary file read on 
unit 10. The type (REAL or INTEGER) of each variable follows standard FORTRAN convention. The I, 
J ,  and I( indices correspond to the (1, (2, and (3 directions, respectively. 

Namelist SYSTEM 

ISYS 

INTERP 

ICIIECK 

ICONT 

ITMAX 
LREFI 

LREFJ 
LREFK 
RLXSOR 

RLXBDE 

RLXADP 
EPSFLD 
EPSBAD 
EPSCNV 

= 1  

= 2  

= 1  

= o  

= 1  
= o  
= o  
= 1  

= 1  

= 2  

= 3  

Namelist PBASIC 

IlCONT = 1 
= o  

Solve governing equation as a Laplacian system without forcing functions (default). 
This option produces a grid that tends toward uniform spacing away from curved 
boundaries , but produces smaller spacing near convex boundaries and larger spacing 
near concave boundaries. 
Solve governing equation as a Poission system with forcing functions. This option 
allows specificaton of spacing and orthogonality at the boundaries. 
Run three-dimensional interpolation as initial guess (default). This option is used 
when the geometry preprocessor is employed to generate the initial grid binary 
file without interior values. 
Bypass three-dimensional interpolation. This option is used when a complete 
initial grid binary file is imported from another grid generator. 
Check boundary structures for grid folding and write report on unit 20. 
Bypass boundary structure check (default). 
Terminate operation if boundary structure grid folding is detected. 
Continue operation (default). 
Maximum number of overall iterations (default = 100). 
Establish a reference length scale for spacing off the I = 1 and I = IMAX surfaces 
based upon the unit length in the J-direction for each K-layer at the I = 1 surface. 
The unit length is defined as (total length)/(number of points - 1). 
Establish a reference length scale for spacing off the I = 1 and I = IMAX surfaces 
based upon the local unit length in the J-direction. The unit length is defined as 
(total length)/(number of points - 1). 
Establish a reference length scale for spacing off the I = 1 and I = IMAX surfaces 
based upon the value of FACIl from the initial grid binary file or the 
three-dimensional interpolation (default). 
Same as above for spacing off the J = 1 and J = JMAX surfaces. 
Same as above for spacing off the K = 1 and K = KMAX surfaces. 
Relaxation factor for the SOR solver. Suitable values range from 0.0 to 2.0 
(default = 1.0). 
Relaxation factor for extrapolated second derivatives at the boundary surfaces 
(default = 0.15). 
Relaxation factor for grid adaptation (default = 0.15). 
Folding grid point criterion (default = 0.0). 
Sheared grid point criterion (default = sine loo).  
Convergence criterion (default = 0.0001). 

Control spacing and orthogonality off the I = 1 surface. 
Do not control spacing and orthogonality off the I = 1 surface (default). 
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IMCONT 
J lCONT 
JMCONT 
KlCONT 
KMCONT 
DELTIl 

DELTIM 
DELTJ 1 
DELTJM 
DELTKl 
DELTKM 

Same as above for I = IMAX surface. 
Same as above for J = 1 surface. 
Same as above for J = JMAX surface. 
Same as above for K = 1 surface. 
Same as above for K = KMAX surface. 
Desired spacing off the I = 1 surface. If DELTIl = 0.0, the value will be set equal 
to the value of FACI1 from the initial grid binary file (default). 
Same as above for the desired spacing off the I = IMAX surface. 
Same as above for the desired spacing off the J = 1 surface. 
Same as above for the desired spacing off the J = JMAX surface. 
Same as above for the desired spacing off the K = 1 surface. 
Same as above for the desired spacing off the K = KMAX surface. 

The following parameters control the depth of grid clustering away from the controlled surface. The 
default value of 0.0 produces a quasi-linear rate of spacing increase away from the boundary. Positive 
values produce a nonlinear rate with continuously increasing spacing in the interior. Negative values 
produce a nonlinear rate with near-uniform spacing in the interior. 

APIl 
APIM 
APJ 1 
APJM 
APKl 
APKM 
AQI 1 
AQIM 
AQJl 
AQJ M 
AQKl 
AQKM 
ARIl 
ARIM 
ARJl  
ARJM 
ARK1 
ARKM 

C,,,,,, for tl-direction extrapolation of PI from I = 1 surface. 
C,,,,,, for (1-direction extrapolation of PI from I = IMAX surface. 
C,,,,,, for &-direction extrapolation of PI from J = 1 surface. 
C,,,,,, for &direction extrapolation of PI from J = JMAX surface. 
C,,,,,, for &-direction extrapolation of PI from K = 1 surface. 
C,,,,,, for &-direction extrapolation of PI from K = KMAX surface. 
C,,,,,, for <I-direction extrapolation of P 2  from I = 1 surface. 
C,,,,,, for €1-direction extrapolation of P 2  from I = IMAX surface. 
C,,,,,, for &-direction extrapolation of P 2  from J = 1 surface. 
C,a,a*a for &direction extrapolation of P2 from J = JMAX surface. 
C,,,,,, for &-direction extrapolation of P 2  from K = 1 surface. 
C,,,,,, for &direction extrapolation of P2 from K = KMAX surface. 
C,,,,,, for €1-direction extrapolation of P3 from I = 1 surface. 
C,,,,,, for €1-direction extrapolation of P3 from I = IMAX surface. 
C,,,,,, for &direction extrapolation of P3 from J = 1 surface. 
C,,,,,, for C2-direction extrapolation of P3 from J = JMAX surface. 
C,,,,,, for &direction extrapolation of P3 from K = 1 surface. 
C,,,,,, for &direction extrapolation of P3 from K = KMAX surface. 

. 

The following parameters control the depth of grid orthogonality away from the controlled boundary. 
Larger positive values produce increased depth (default = 3.0). 

BI 1 
BIM 
BJ 1 
BJM 
BK1 
BKM 

Cp,,, for €1-direction power-law factorization of PI, P2 ,  P3 from I = 1 surface 
Cp,,, for €1-direction power-law factorization of PI, P2 ,  P3 from I = IMAX surface 
Cp,,, for &-direction power-law factorization of PI, P2 ,  P3 from J = 1 surface 
Cp,., for &-direction power-law factorization of PI, P2,  P3 from J = JMAX surface 
Cp,,, for &-direction power-law factorization of PI, P2, P3 from K = 1 surface 
Cp,,, for &-direction power-law factorization of Pl , P2, P3 from K = KMAX surface 

Namelist PADAPT 

SMRATE 

SMORDR 

SMBDWT 

Rate of the penalty function for smoothness adaptation (default = 3.0). 
Larger values produce smoother grids tending toward the Laplacian solution. 
Power of the penalty function for smoothness adaptation (default = 1.0). 
Larger values produce more smoothing near discontinuous areas. 
Parameter providing boundary protection for smoothness adaptation (default = 0.0). 
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OFRNGE 

OFRATE 

OFORDR 

OFBDWT 

OTORDR 

WTOT 
WTFW 
IACCUM = 1  

= o  

Larger values allow deeper penetration of the specified boundary conditions into the 
interior at  the expense of smoothness adaptation. The maximum value of unity 
produces a linear penetration. 
Range of the penalty function for combined orthogonality and resolution adaptation, 
when IACCUM = 0 (default = 1.0). Larger values produce more combined adaptation. 
Lag of the combined orthogonality and resolution adaptation when IACCUM = 1. 
A zero value produces no lag, while a unity value produces full lag. 
Rate of the penalty function for combined orthogonality and resolution adaptation. 
Suggested values are OFRATE = 5.0 when IACCUM = 0 and OFRATE = 50.0 
when IACCUM = 1. Larger values produce more combined adaptation. 
Power of the penalty function for combined orthogonality and resolution (default = 1.0). 
Larger values produce more adaptation near highly sheared and high gradient areas. 
Parameter providing boundary protection for combined orthogonality and resolution 
adaptation (default = 0.0). Larger values allow deeper penetration of the specified 
boundary conditions into the interior a t  the expense of combined adaptation. The 
maximum value of unity produces a linear penetration. 
Power of the skewness function for orthogonality adaptation (default = 2.0). 
Larger values produce more adaptation near highly sheared areas. 
Weight factor for relative effect of orthogonality adaptation (default = 1.0). 
Weight factor for relative effect of resolution adaptation (default = 0.0). 
Perform accumulative adaptation. The adjustments to the forcing functions 
are lagged, but the forcing functions always satisfy the physical constraints (default). 
Perform nonaccumulative adaptation. The adjustments to the forcing functions 
are immediate and are limited only by the range and rate constants. 

The initial grid binary file is read from FORTRAN unit 10 with the following code: 

READ (IO) IHAX,JMAX,KMAX 
DO 100 K=I,KHAX 
READ (IO) ((X(I,J,K),I=I,IIIAX),J=I,JMAX), 

* ((Y(I,J,K),I=I,IIIAX),J=I,JMAX), 
* ((z(I,J,K),I=~,IMAx),J=~,JHAx) 

100 CONTINUE 
READ (IO) ICTYPE 
READ (IO) ISINCI,ISING2,ISINC3,ISIWC4 
READ (IO) JSINGI,JSINC2,JSING3,JSING4 
READ (IO) FACIl ,FACIM 
READ (IO) FACJ1,FACJM 
READ (IO) FACK1,FACKM 

I The variables in the binary file are defined as follows: 

IMAX 
JMAX 
KMAX 
X 
Y 
Z 
IGTYPE = 1  

= 2  
ISINGl 
ISING2 
ISINGS 
ISING4 

Number of grid points in the €1 direction. 
Number of grid points in the €2 direction. 
Number of grid points in the €3 direction. 
Physical Cartesian coordinate in the 21 direction. 
Physical Cartesian coordinate in the 1 2  direction. 
Physical Cartesian coordinate in the 23 direction. 
C-grid. 
H-grid. 
I-index of first line singularity on the J = 1 surface. 
I-index of second line singularity on the J = 1 surface. 
I-index of first line singularity on the J = JMAX surface. 
I-index of second line singularity on the J = JMAX surface. 
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JSING 1 
JSINGP 
JSING3 
JSING4 

J-index of first line singularity on the I = 1 surface. 
J-index of second line singularity on the I = 1 surface. 
J-index of first line singularity on the J = JMAX surface. 
J-index of second line singularity on the J = JMAX surface. 

The following values are only used if DELTI1, DELTIM, DELTJ1, DELTJM, DELTK1, and DELTKM 
in namelist PRASIC are defaulted. 

FACIl 
FACIM 
FACJ 1 
FACJM 
FACK 1 
FACKM 

Desired spacing off the I = 1 surface. 
Desired spacing off the I = IMAX surface. 
Desired spacing off the J = 1 surface. 
Desired spacing off the J = JMAX surface. 
Desired spacing off the K = 1 surface. 
Desired spacing off the K = KMAX surface. 

Output from the basic solver consists of five files. The system message file is written on unit 6. The locations 
of any boundary and interior folding points are written on units 20 and 30, respectively. The final grid file 
is written on unit 40 with the same format as the initial grid file. A plot file for graphics post-processing is 
written on unit 50. 

Folding points are identified where the normalized Jacobian is negative. Sheared points are identified where 
the normalized Jacobian is less than EPSBAD. An error index is computed every ten iterations and is defined 
as the relative movement of a point normalized by the diagonal length of the grid. Convergence is attained 
when the absolute maximum error index among all points is less than EPSCNV with no folding points. 
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APPENDIX B 

USER'S MANUAL FOR GEOMETRY PREPROCESSOR 

The preprocessor is coded in FOWRAN IV as program BLADE with 39 subprograms. A two-dimensional 
version of the basic solver is included as subroutine GRIDSD to define nodal point distributions on the hub 
and shroud boundary surfaces. The nonstandard PARAMETER statement is used to facilitate dimensioning 
of arrays, while the nonstandard NAMELIST feature is used for quasi-free-format input. 

Input to the preprocessor comprises three namelists read on unit 5 for GRIDZD, one namelist read on unit 7 
for BLADE, and formatted blade geometry data on unit 8. The type (REAL or INTEGER) of each variable 
follows standard FORTRAN convention. The I, J ,  and K indices correspond to the (1, E 2 ,  and directions, 
respectively. 

Namelist SYSTEM (Unit 5) 

ISYS = 1  

= 2  

ICNECK = 1 
= o  

ICONT = O  
= 1  

ITMAX 
ItL X S 0 R 

RLXBDE 

RLXADP 
EPSFLD 
EPSBAD 
EPSCNV 

Solve governing equation as a Laplacian system without forcing functions (default). 
This option produces a grid that tends toward uniform spacing away from curved 
boundaries, but produces smaller spacing near convex boundaries and larger spacing 
near concave boundaries. 
Solve governing equation as a Poission system with forcing functions. This option 
allows specificaton of spacing and orthogonality at the boundaries. 
Check boundary structures for grid folding and write report on unit 20. 
Bypass boundary structure check (default). 
Terminate operation if boundary structure grid folding is detected. 
Continue operation (default). 
Maximum number of overall iterations (default = 100). 
Relaxation factor for the SOR solver. Suitable values range from 0.0 to 2.0 
(default = 1.0). 
Relaxation factor for extrapolated second derivatives at  the boundary surfaces 
(default = 0.15). 
Relaxation factor for grid adaptation (default = 0.15). 
Folding grid point criterion (default = 0.0). 
Sheared grid point criterion (default = sine 10'). 
Convergence criterion (default = 0.0001). 

Namelist PBASIC (Unit 5) 

IlCONT = 1 
= o  

IMCONT 
J lCONT 
JMCONT 
DELTI 1 

DELTIM 
DELTJ 1 
DELTJM 

Control spacing and orthogonality off the I =1 surface. 
Do not control spacing and orthogonality off the I = 1 surface (default). 
Same as above for I = IMAX surface. 
Same as above for J = 1 surface. 
Same as above for J = JMAX surface. 
Desired spacing off the I = 1 surface. If DELTI1 = 0.0, the value will be set equal 
to the value of FACI1 from the initial grid binary file (default). 
Same as above for the desired spacing off the I = IMAX surface. 
Same as above for the desired spacing off the J = 1 surface. 
Same as above for the desired spacing off the J = JMAX surface. 

The following parameters control the depth of grid clustering away from the controlled surface. The 
default value of 0.0 produces a quasi-linear rate of spacing increase away from the boundary. Pceitive 
values produce a nonlinear rate with continuously increasing spacing in the interior. Negative values 
produce a nonlinear rate with near-uniform spacing in the interior. 
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APIl 
APIM 
APJ 1 
APJM 
AQIl 
AQIM 
AQJ 1 
AQJM 

Gal,,,, for €1-direction extrapolation of PI from I = 1 surface. 
C,,,,,, for (1-direction extrapolation of PI from I = IMAX surface. 
C,,,,,, for &direction extrapolation of PI from J = 1 surface. 
C,,~,o,  for &-direction extrapolation of PI from J = JMAX surface. 
C, , , , ,  for &-direction extrapolation of P 2  from I = 1 surface. 
C,,,,,, for €1-direction extrapolation of P2 from I = IMAX surface. 
C,,,,,, for &direction extrapolation of P 2  from J = 1 surface. 
C,,,,p, for &.-direction extrapolation of P2 from J = JMAX surface. 

The following parameters control the depth of grid orthogonality away from the controlled boundary. 
Larger positive values produce increased depth (default = 3.0). 

BI1 
BIM 
BJ1 
BJM 

Cp,,, for &-direction power-law factorization of PI and P 2  from I = 1 surface 
Cp,,, for &-direction power-law factorization of PI and P2 from I = IMAX surface 
Cp,,, for €2-direction power-law factorization of PI and P2 from J = 1 surface 
Cp,,, for &direction power-law factorization of PI and Pz from J = JMAX surface 

Namelist PADAPT (Unit 5 )  

SMRATE 

SMORDR 

SMBDWT 

OFRNGE 

OFRATE 

OFORDR 

OFBDWT 

OTORDR 

WTOT 
WTFW 
IACCUM = 1  

= o  

Rate of the penalty function for smoothness adaptation (default = 3.0). 
Larger values produce smoother grids tending toward the Laplacian solution. 
Power of the penalty function for smoothness adaptation (default = 1.0). 
Larger values produce more smoothing near discontinuous areas. 
Parameter providing boundary protection for smoothness adaptation (default = 0.0). 
Larger values allow deeper penetration of the specified boundary conditions into the 
interior a t  the expense of smoothness adaptation. The maximum value of unity 
produces a linear penetration. 
Range of the penalty function for combined orthogonality and resolution adaptation, 
when IACCUM = 0 (default = 1.0). Larger values produce more combined adaptation. 
Lag of the combined orthogonality and resolution adaptation when IACCUM = 1. 
A zero value produces no lag, while a unity value produces full lag. 
Rate of the penalty function for combined orthogonality and resolution adaptation. 
Suggested values are OFRATE = 5.0 when IACCUM = 0 and OFRATE = 50.0 
when IACCUM = 1. Larger values produce more combined adaptation. 
Power of the penalty function for combined orthogonality and resolution (default = 1.0). 
Larger values produce more adaptation near highly sheared and high gradient areas. 
Parameter providing boundary protection for combined orthogonality and resolution 
adaptation (default = 0.0). Larger values allow deeper penetration of the specified 
boundary conditions into the interior at the expense of combined adaptation. The 
maximum value of unity produces a linear penetration. 
Power of the skewness function for orthogonality adaptation (default = 2.0). 
Larger values produce more adaptation near highly sheared areas. 
Weight factor for relative effect of orthogonality adaptation (default = 1.0). 
Weight factor for relative effect of resolution adaptation (default = 0.0). 
Perform accumulative adaptation. The adjustments to the forcing functions 
are lagged, but the forcing functions always satisfy the physical constraints (default). 
Perform nonaccumulative adaptation. The adjustments to the forcing functions 
are immediate and are limited only by the range and rate constants. 

Namelist BLDATA (Unit 7) 

IGTYPE = 1 Generate C-grid. 
= 2 Generate H-grid. 

DELTAT Periodic pitch angle in radians. 
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KCUT 
KMAX 
FACK1 

1 FACK2 
'' PWK 

NBLD 
FACBl 
FACB2 
PWBD 

NLEAD 
FLCUTl 

FLCUT2 
NTAIL 
FTCUTl 

FTCUT2 
PWCUT 

NIO 

FACIO 1 

FACIO2 

Number of blade geometry cuts in the K-direction supplied on unit 8. 
Desired number of grid points in the K-direction. 
Desired spacing off the K = 1 surface. 
Desired spacing off the K = KMAX surface. 
Power of stretching function for the K-direction (default = 1.0). Larger values 
produce tighter clustering near the boundaries. 
Desired number of points on upper and lower blade surfaces. 
Desired spacing on the blade at leading edge. 
Desired spacing on the blade at  trailing edge. 
Power of stretching function for the blade point distribution (default = 1.0). 
Larger values produce tighter clustering at the boundaries. 
Desired number of points on the leading edge branch cut (H-grid only). 
Desired spacing on leading edge branch cut at leading edge (H-grid only). 
If FLCUTl > 100.0, the spacing on the branch cut at  the leading edge will 
match the spacing on the blade at  the leading edge. 
Desired spacing on leading edge branch cut at inlet (H-grid only). 
Desired number of points on trailing edge branch cut. 
Desired spacing on trailing edge branch cut a t  trailing edge. 
If FTCUTl > 100.0, the spacing on the branch cut at  the trailing edge will 
match the spacing on the blade a t  the trailing edge. 
Desired spacing on trailing edge branch cut at outlet. 
Power of stretching function for the branch cut point distributions (default = 1.0). 
Larger values produce tighter clustering at  the boundaries. 
Desired number of points in the J-direction at the outlet from trailing edge branch 
cut to the periodic lines for C-grid or one-half the desired number of points in the 
J-direction at  the inlet and outlet for H-grid. 
Desired spacing in the J-direction off the branch cut a t  the outlet for C-grid 
or desired spacing in the J-direction off the periodic surfaces a t  the inlet and outlet 
for H-grid. 
Desired spacing in the J-direction off the periodic surfaces at the outlet for C-grid 
or desired spacing in the J-direction at  the center of the inlet and outlet for H-grid. 

The following parameters apply only to the C-grid: 

ISL 
ISU 
FPDA 
FPDB 
PWIN 

FPDC 
FPDD 
PWPRD 

Desired number of points on lower half of inlet section. 
Desired number of points on upper half of inlet section. 
Desired spacing at center of inlet section. 
Desired spacing at edges of inlet section. 
Power of stretching function for inlet section point distribution (default = 1.0). 
Larger values produce tighter clustering a t  the boundaries. 
Desired spacing on the periodic surfaces at  the inlet. 
Desired spacing on the periodic surfaces at  the outlet. 
Power of stretching function for point distribution on the periodic surfaces 
(default = 1.0). Larger values produce tighter clustering a t  the boundaries. 

The formatted blade geometry data is read from FOElTRAN unit 8 with the following code: 

DO 680 K=I,KCUT 
READ (8,1010) NPATH 
READ (8,1020) (ZPATACI) ,I=I,NPATH) 
READ (8,1020) (RPATH( I) , I=l , NPATH) 
READ (8,1010) IBLDP 

READ (8,1020) (BLDPTC(1) ,I=I,IBLDP) 
READ (8,1020) (BLDPZC(I) ,I=I,IBLDP) 
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READ (8,1020) (BLDPRC(1) ,I=l,IBLDP) 
READ (8,1010) IBLDS 
READ (8,1020) (BLDSZC(I),I=I,IBLDS) 
READ (8,1020) (BLDSTC(1) ,I=I,IBLDS) 
READ (8,1020) (BLDSRC(I),I=I,IBLDS) 
READ (8,1020) SLOPL, SLOPT 

680 CONTINUE 

1010 FORMAT (113) 
1020 FORMAT (8FlO.O) 

The variables in the formatted file are defined as follows: 

NPATH 
ZPATN 
RPATH 
IBLDP 
BLDPZC 
BLDPTC 
BLDPRC 
IBLDS 
BLDSZC 
BLDSTC 
BLDSRC 
SLOPL 

SLOPT 

Total number of data points defining the surface cut. 
Axial coordinates of data points on the surface cut. 
Radial coordinates of data points on the surface cut. 
Total number of data points defining the pressure or lower surface of blade. 
Axial coordinates of data points on pressure surface. 
Circumferential coordinates of data points on pressure surface (in radians). 
Radial coordinates of data points on pressure surface. 
Total number of data points defining the suction or upper surface of blade. 
Axial coordinates of data points on suction surface. 
Circumferential coordinates of data points on suction surface (in radians). 
Radial coordinates of data points on suction surface. 
Tangent of inflow angle or leading edge mean camber angle. If SLOPL > 100.0, 
SLOPL will be reset to match the computed leading edge mean camber angle. 
Tangent of outflow angle or trailing edge mean camber angle. If SLOPT > 100.0, 
SLOPT will be reset to match the computed trailing edge mean camber angle. 

Output from the preprocessor consists of eight files. The system message file is written on unit 6. The initial 
grid file is written on unit 10 for use by the basic solver. The locations of any boundary folding points on 
the hub and shroud surfaces are written unit 20. The location of any interior folding points on the hub and 
shroud surfaces are written on unit 30. The computed nodal point distributions for the hub and shroud 
surfaces are written on units 40 and 45. Plot files for graphics post-processing are written on units 50 and 55 
for the hub and shroud surfaces. 

Folding points are identified where the normalized Jacobian is negative. Sheared points are identified where 
the normalized Jacobian is less than EPSBAD. An error index is computed every ten iterations and is defined 
as the relative movement of a point normalized by the diagonal length of the grid. Convergence is attained 
when the absolute maximum error index among all points is less than EPSCNV with no folding points. 

The initial grid binary file is written on FORTRAN unit 10 with the following code: 

WRITE (IO) IMAX,JMAX,KMAX 
DO 100 K=I,KHAX 
WRITE (IO) ((~(1, J,K) ,I=I ,IMAX), J=I, JMAX) , 

((Y(I,J,K) ,I=l ,IHAX), J=l ,JMAX) , 
( (2 (I, J ,K) , 1=1 , IMAX) , J=l , JHAX) 

* 
* 

100 CONTINUE 
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WRITE (10) IGTYPE 
WRITE (10) ISIICl,ISIIC2,ISIIC3,ISIIG4 
WRITE ( I O )  JSIIGIDJSIIG2,JSINC3,JSIIC4 
WRITE ( I O )  FACII,FACIH 
WRITE (10) FACJ1,FACJH 
WRITE (10) FACK1,FACKH 

The variables in the binary file are defined as follows: 

IMAX 
JMAX 
KMAX 
X 
Y 
z 
IGTYPE = 1  

= 2  
ISING 1 
ISINGB 
ISING3 
ISING4 
JSING 1 
JSINGP 
JSING3 
JSING4 
FACI 1 
FACIM 
FACJ 1 
FACJM 
FACK1 
FACKM 

Number of grid points in the €1 direction. 
Number of grid points in the €2 direction. 
Number of grid points in the €3 direction. 
Physical Cartesian coordinate in the 21 direction. 
Physical Cartesian coordinate in the 2 2  direction. 
Physical Cartesian coordinate in the 23 direction. 
C-grid. 
H-grid. 
I-index of first line singularity on the J = 1 surface. 
I-index of second line singularity on the J = 1 surface. 
I-index of first line singularity on the J = JMAX surface. 
I-index of second line singularity on the J = JMAX surface. 
J-index of first line singularity on the I = 1 surface. 
J-index of second line singularity on the I = 1 surface. 
J-index of first line singularity on the J = JMAX surface. 
J-index of second line singularity on the J = JMAX surface. 
Desired spacing off the I = 1 surface. 
Desired spacing off the I = IMAX surface. 
Desired spacing off the J = 1 surface. 
Desired spacing off the J = JMAX surface. 
Desired spacing off the K = 1 surface. 
Desired spacing off the K = KMAX surface. 
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(B) C-QID I N  COPWTATIONAL SPACE. 

FlWRE 1. - C-GRID ABWT GENERIC BLADE. 
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(A )  H-GRID I N  PHYSICAL SPACE. 

A1 c1 D1 B1 

(B) H-GRID I N  CWUTATIONAL SPACE. 

FIGURE 2.  - H-GRID BETWEEN GENERIC BLADES. 

FIGURE 3. - THREE-DIENSIONAL C-GRID FOR TURBINE ROTOR. FIGURE 4. - THREE-DIENSIONAL H-GRID FOR TURBINE ROTOR. 
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